Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Unique water distribution of Langmuir-Blodgett versus classical crystals.

Identifieur interne : 000210 ( Main/Exploration ); précédent : 000209; suivant : 000211

Unique water distribution of Langmuir-Blodgett versus classical crystals.

Auteurs : Eugenia Pechkova [Italie] ; Victor Sivozhelezov ; Luca Belmonte ; Claudio Nicolini

Source :

RBID : pubmed:22706161

Descripteurs français

English descriptors

Abstract

Langmuir-Blodgett films when used as nanotemplates for crystallization often leads to marked changes in protein stability and structure. Earlier we found that stability of proteins is also correlated with aqueous surroundings in the crystals. Here we study the direct relationships between presence of LB nanotemplates and unique patterns of water molecules surrounding the protein, for four model proteins for which 3D structures are available, and where crystallization conditions for each protein are the same except the presence of LB nanotemplate. Shape of frequency distribution of volumes occupied by water molecules were analyzed. They were found to be different between "classical" samples of different proteins, but surprisingly quite similar for LB samples. Volumes occupied by each water molecule as the function of the distance of the given molecule from the protein surface were studied. Introduction of LB film leads to appearance of water molecules close to protein surface but occupying large volumes. These findings confirm earlier experimental findings on the role of water molecules in determining protein stability and thereby pointing to water as a possible candidate for differences apparent in LB crystal stability against radiation.

DOI: 10.1016/j.jsb.2012.05.021
PubMed: 22706161


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Unique water distribution of Langmuir-Blodgett versus classical crystals.</title>
<author>
<name sortKey="Pechkova, Eugenia" sort="Pechkova, Eugenia" uniqKey="Pechkova E" first="Eugenia" last="Pechkova">Eugenia Pechkova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Nanoworld Institute, Fondazione EL.B.A. Nicolini, Largo Redaelli 7, Pradalunga, Bergamo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Nanoworld Institute, Fondazione EL.B.A. Nicolini, Largo Redaelli 7, Pradalunga, Bergamo</wicri:regionArea>
<wicri:noRegion>Bergamo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sivozhelezov, Victor" sort="Sivozhelezov, Victor" uniqKey="Sivozhelezov V" first="Victor" last="Sivozhelezov">Victor Sivozhelezov</name>
</author>
<author>
<name sortKey="Belmonte, Luca" sort="Belmonte, Luca" uniqKey="Belmonte L" first="Luca" last="Belmonte">Luca Belmonte</name>
</author>
<author>
<name sortKey="Nicolini, Claudio" sort="Nicolini, Claudio" uniqKey="Nicolini C" first="Claudio" last="Nicolini">Claudio Nicolini</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22706161</idno>
<idno type="pmid">22706161</idno>
<idno type="doi">10.1016/j.jsb.2012.05.021</idno>
<idno type="wicri:Area/Main/Corpus">000227</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000227</idno>
<idno type="wicri:Area/Main/Curation">000227</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000227</idno>
<idno type="wicri:Area/Main/Exploration">000227</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Unique water distribution of Langmuir-Blodgett versus classical crystals.</title>
<author>
<name sortKey="Pechkova, Eugenia" sort="Pechkova, Eugenia" uniqKey="Pechkova E" first="Eugenia" last="Pechkova">Eugenia Pechkova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Nanoworld Institute, Fondazione EL.B.A. Nicolini, Largo Redaelli 7, Pradalunga, Bergamo, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Nanoworld Institute, Fondazione EL.B.A. Nicolini, Largo Redaelli 7, Pradalunga, Bergamo</wicri:regionArea>
<wicri:noRegion>Bergamo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sivozhelezov, Victor" sort="Sivozhelezov, Victor" uniqKey="Sivozhelezov V" first="Victor" last="Sivozhelezov">Victor Sivozhelezov</name>
</author>
<author>
<name sortKey="Belmonte, Luca" sort="Belmonte, Luca" uniqKey="Belmonte L" first="Luca" last="Belmonte">Luca Belmonte</name>
</author>
<author>
<name sortKey="Nicolini, Claudio" sort="Nicolini, Claudio" uniqKey="Nicolini C" first="Claudio" last="Nicolini">Claudio Nicolini</name>
</author>
</analytic>
<series>
<title level="j">Journal of structural biology</title>
<idno type="eISSN">1095-8657</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystallization (MeSH)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Endopeptidase K (chemistry)</term>
<term>Nanostructures (chemistry)</term>
<term>Plant Proteins (chemistry)</term>
<term>Protein Stability (MeSH)</term>
<term>Ribonuclease, Pancreatic (chemistry)</term>
<term>Solvents (chemistry)</term>
<term>Thermolysin (chemistry)</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bacillus thermoproteolyticus neutral proteinase (composition chimique)</term>
<term>Cristallisation (MeSH)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Endopeptidase K (composition chimique)</term>
<term>Nanostructures (composition chimique)</term>
<term>Pancreatic ribonuclease (composition chimique)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Solvants (composition chimique)</term>
<term>Stabilité protéique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Endopeptidase K</term>
<term>Plant Proteins</term>
<term>Ribonuclease, Pancreatic</term>
<term>Solvents</term>
<term>Thermolysin</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanostructures</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Bacillus thermoproteolyticus neutral proteinase</term>
<term>Eau</term>
<term>Endopeptidase K</term>
<term>Nanostructures</term>
<term>Pancreatic ribonuclease</term>
<term>Protéines végétales</term>
<term>Solvants</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallization</term>
<term>Crystallography, X-Ray</term>
<term>Protein Stability</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallisation</term>
<term>Cristallographie aux rayons X</term>
<term>Stabilité protéique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Langmuir-Blodgett films when used as nanotemplates for crystallization often leads to marked changes in protein stability and structure. Earlier we found that stability of proteins is also correlated with aqueous surroundings in the crystals. Here we study the direct relationships between presence of LB nanotemplates and unique patterns of water molecules surrounding the protein, for four model proteins for which 3D structures are available, and where crystallization conditions for each protein are the same except the presence of LB nanotemplate. Shape of frequency distribution of volumes occupied by water molecules were analyzed. They were found to be different between "classical" samples of different proteins, but surprisingly quite similar for LB samples. Volumes occupied by each water molecule as the function of the distance of the given molecule from the protein surface were studied. Introduction of LB film leads to appearance of water molecules close to protein surface but occupying large volumes. These findings confirm earlier experimental findings on the role of water molecules in determining protein stability and thereby pointing to water as a possible candidate for differences apparent in LB crystal stability against radiation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22706161</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>02</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8657</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>180</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of structural biology</Title>
<ISOAbbreviation>J Struct Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Unique water distribution of Langmuir-Blodgett versus classical crystals.</ArticleTitle>
<Pagination>
<MedlinePgn>57-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jsb.2012.05.021</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1047-8477(12)00171-2</ELocationID>
<Abstract>
<AbstractText>Langmuir-Blodgett films when used as nanotemplates for crystallization often leads to marked changes in protein stability and structure. Earlier we found that stability of proteins is also correlated with aqueous surroundings in the crystals. Here we study the direct relationships between presence of LB nanotemplates and unique patterns of water molecules surrounding the protein, for four model proteins for which 3D structures are available, and where crystallization conditions for each protein are the same except the presence of LB nanotemplate. Shape of frequency distribution of volumes occupied by water molecules were analyzed. They were found to be different between "classical" samples of different proteins, but surprisingly quite similar for LB samples. Volumes occupied by each water molecule as the function of the distance of the given molecule from the protein surface were studied. Introduction of LB film leads to appearance of water molecules close to protein surface but occupying large volumes. These findings confirm earlier experimental findings on the role of water molecules in determining protein stability and thereby pointing to water as a possible candidate for differences apparent in LB crystal stability against radiation.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pechkova</LastName>
<ForeName>Eugenia</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Nanoworld Institute, Fondazione EL.B.A. Nicolini, Largo Redaelli 7, Pradalunga, Bergamo, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sivozhelezov</LastName>
<ForeName>Victor</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Belmonte</LastName>
<ForeName>Luca</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nicolini</LastName>
<ForeName>Claudio</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>06</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Struct Biol</MedlineTA>
<NlmUniqueID>9011206</NlmUniqueID>
<ISSNLinking>1047-8477</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012997">Solvents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.27.5</RegistryNumber>
<NameOfSubstance UI="D012259">Ribonuclease, Pancreatic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.64</RegistryNumber>
<NameOfSubstance UI="D019286">Endopeptidase K</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.24.27</RegistryNumber>
<NameOfSubstance UI="D013820">Thermolysin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019286" MajorTopicYN="N">Endopeptidase K</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049329" MajorTopicYN="N">Nanostructures</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055550" MajorTopicYN="N">Protein Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012259" MajorTopicYN="N">Ribonuclease, Pancreatic</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012997" MajorTopicYN="N">Solvents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013820" MajorTopicYN="N">Thermolysin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>05</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22706161</ArticleId>
<ArticleId IdType="pii">S1047-8477(12)00171-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.jsb.2012.05.021</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Belmonte, Luca" sort="Belmonte, Luca" uniqKey="Belmonte L" first="Luca" last="Belmonte">Luca Belmonte</name>
<name sortKey="Nicolini, Claudio" sort="Nicolini, Claudio" uniqKey="Nicolini C" first="Claudio" last="Nicolini">Claudio Nicolini</name>
<name sortKey="Sivozhelezov, Victor" sort="Sivozhelezov, Victor" uniqKey="Sivozhelezov V" first="Victor" last="Sivozhelezov">Victor Sivozhelezov</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Pechkova, Eugenia" sort="Pechkova, Eugenia" uniqKey="Pechkova E" first="Eugenia" last="Pechkova">Eugenia Pechkova</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000210 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000210 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22706161
   |texte=   Unique water distribution of Langmuir-Blodgett versus classical crystals.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22706161" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020